

Overview of Presentation

\qquad

- The Research and Its Implications
- Overview of the major research themes \qquad
- A Field Guide to Student Success in Mathematics and Science \qquad
- Middle school reform in mathematics and science \qquad
- Creating Strategies
- Discussion
\qquad
\qquad

American Institutes for Research (AIR)

- The American Institutes for Research (AIR) is one of America's leading educational research, evaluation and consulting organizations.
- AIR provides sophisticated research, analysis, technical assistance, consulting, assessment, and strategic communications services to a wide variety of clients.
- AIR's educational research budget totals approximately $\$ 130$ million a year and spans a wide variety of educational practice areas.

Theme \# 1

U.S. Students Lagging in Globally Competitive Skills

- The mathematics and science performance of students in the American K-12 system lags substantially behind their international peers
- The 21st Century economy demands greater skills in math, science and technology
- This weakness in American student performance exists across all student groups, even among our highest performing students
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dramatic Change in the Skills Required
for 21st Century Citizenship

$\overline{\text { Source: Meeder, H. K., Preparing America's future: High school }}$ initiative.

- Over the last 50 years, the skill sets needed for the workforce has seen a dramatic shift.
- All jobs - even jobs not requiring further education after high school - necessitate after high school - necessitate science skills from high schoo graduates.
- Between 1998 and 2008, jobs requiring STEM training will have increased by $51 \%-4 x$ faster than overall job growth

			veal Low Levels ath and Science
Percentage of Students At or Above Proficiency on 2005 NAEP			- U.S. students fare worse the longer they stay in the K-12 schools: - Approx 33% of $4^{\text {th }}$ and $8^{\text {th }}$ grade students can perform at grade level - By $12^{\text {th }}$ grade, less than 1 in 5 students can perform at grade level - The consequences of U.S. students' deficiencies in math and science: - 33% of first-year college students have to take remedial courses - 63% of students taking a remedial math course do not finish college
	Math	Science	
4th	36\%	29\%	
8th	30\%	29\%	
12th	17\%**	18\%	
*Represents assessments results for 2000. Mathematics NAEP results for 2005 were not available at time of publication. Source: National Center for Education Statistics, The nation's report card: Mathematics 2000; National Center for Education Statistics, The nation's report card: Mathematics 2005.			

International of U.S. Math Perfor	Comparisons and Science nance
- Internationally, other countries have significantly increased their math and science proficiency and rigor when compared to U.S. - According to TIMSS data, - U.S. $4^{\text {th }}$ graders are performing somewhat better than the international average - U.S. $8^{\text {th }}$ graders are performing significantly below other industrialized countries - By $12^{\text {th }}$ grade, the U.S. is among the lowest performing countries	TIMSS Nations' Average Mathematics Performance Compared With the United States (1999) Source: U.S. Department of Education, Highlights from TIMSS: Overview and key findings across grade levels.

Theme \# 2

Algebra as the Key Gateway to Future Success
" Algebra is the key "gatekeeper" for student access to the upper-level HS math and science courses

- These courses are drivers of high school graduation, college readiness and college completion
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Algebra as a Gatekeeper

- Algebra is the foundation and language system upon which higher order STEM courses are built.
- Algebra is the prerequisite course students must take before geometry, trigonometry, precalculus and calculus and science courses such as biology, chemistry and \qquad physics.
- Passing Algebra is not an end in and of itself. The key is continuing through the pipeline with upper-level courses.
- Students who pass Algebra by $9^{\text {th }}$ grade are most likely to have higher achievement, continue to pass advanced math and science courses and attend and finish college.

Timing of Algebra is

 Important

- Passing Algebra no later than $9^{\text {th }}$ grade allows time to take more advanced courses.
- While Algebra is considered the gateway course, continuing through the pipeline is the key to unlocking the effects.
- Students who passed Algebra by $9^{\text {th }}$ and Geometry by $10^{\text {th }}$ were:
$2 x$ more likely to be ready for college
than those passing Geometry by $12^{\text {ti }}$ grade
$5 x$ more likely than those not passing
Geometry at all. Geometry at al

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Middle School Reform in Mathematics and Science

Implications of the Research for Educators

- A synthesis of the all of these research findings suggests a number of powerful implications for K-12 educators as they consider ways of improving student performance in mathematics and science. \qquad
- However, more than any other, the most compelling implication is this:
- If we want to dramatically increase the proportion of students graduating from high school with high-level, globally-competitive skills, then we must dramatically ncrease the number of students who achieve
proficiency in Algebra in their middle school or early high school years.
- This proficiency serves as a gateway to the advanced high school coursework that is the driver of high school graduation, college readiness and post-secondary completion rates.

A Policy Framework for a Middle School Reform Agenda

- Establish a fundamental goal that all students pass Algebra 1 by 9th grade.
- Require that all students take rigorous "college prep" mathematics and science courses in middle school
- Reframe the central mission of middle schools around a goal of mathematics and science "numeracy"
- Significantly improve middle school instructional skills in mathematics and science.
- Establish a set of widely reported outcome measures that will track the performance of the K -12 system in improving student performance in mathematics and science.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\quadWhat have we learned? Pre- $\mathbf{k}-12$ Design Principles - Project BEST
- Defined outcomes
- Persistence
- Personalization
- Challenging content
- Engaged adults

Connected Mathematics ${ }^{21}$ Project (CMP) at Michigan State University

- CMP helps students and teachers develop understanding of important mathematical concepts, skills, procedures, and ways of thinking and reasoning, in number, geometry, measurement, algebra, probability and statistics.
- CMP is research based, and was field-tested in diverse sites across the country with approximately 45,000 students and 390 teachers.
- CMP outperforms non-CMP curricula on tests of problem-solving ability, equals or outperforms non-CMP curricula on skills tests, and promotes long term retention.
- http://connectedmath.msu.edu/
- Defined outcomes
- Persistence
- Personalization
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Overarching Goal of the Connected Mathematics Project:

- All students should be able to reason and communicate proficiently in mathematics. They should have knowledge of and skill in the use of the vocabulary, forms of representation, materials, tools, techniques, and intellectual methods of the discipline of mathematics, including the ability to define and solve problems with reason, insight, inventiveness and proficiency

Is organized around important mathematical ideas
- Develops deep understanding of important ideas
- Embeds ideas in carefully selected and sequenced problems, to develop a
coherent, connected curriculum (Development of CMP)
Makes rich connections across problems, investigations from grade to
grade (Mathematics Content)
- Provides ongoing practice and assessment for important concepts, related
skills, and algorithms (Components)
- Supports inquiry instruction and learning with an instructional model based
on findings from recent cognitive research. (Teaching CMP)
- Supports teacher learning of both content and pedagogical strategies with
extensive teacher guides (Teaching CMP)
Meets the needs of all students to grow in their ability to reason effectively,
using different representations (Differentiated Instruction)

\qquad
\qquad
\qquad
coherent, connected curriculum (Development of CMP)

- Makes rich connections across problems, investigations from grade to Provid
skills, and algorithms (Components)
model based

Sutpnsive teacher guides (Taching cmP)
Meets the needs of all students to grow in their ability to reason effectively, using different representations (Differentiated Instruction)

Why Middle School? Parallels to Other Instructional Reform Efforts

- The elementary literacy movement -

Core idea - Getting students to the key "gateway" of being able to read proficiently in their early grades will provide them access to a far wider array of concepts and content in the other disciplines of math, science, social studies, etc.
Born in the early to mid 1990's.
The mantra of "every child a reader by 3 rd grade".
Student literacy has come to be seen as the central mission Student literacy has come to be seen as the central mi
of elementary schools above all other academic goals.
of elementary schools above all other academic goals.
We are now witnessing a sustained and significant increas
We are now witnessing a sustained and significant in in student performance in
elementary school level.

Why Middle School? Parallels to Other Instructional Reform Efforts

- The high school reform movement -
- Core idea - The traditional American high school is obsolete and there is an urgent need to dramatically increase the percentage of teenagers being prepared for rigorous postsecondary education and the challenges of a 21st century, globally competitive society.
- Born in the early 2000's
- The mantra of "every student college ready"

Central mission of high schools being re-cast around collegereadiness.
Unclear regarding the movement's impact on student achievement.

Discussion \& Task

 Develop a Parallel Statement for Middle School Reform in Science and Mathematics
A "Movement" for Middle School Mathematics and Science

- Define and communicate a powerful central goal
- Do not confuse the mantra with the larger goals.
- Realize that change needs to be broad and long-term.
- Maintain a central focus on instructional improvement.
- Redeploy resources.
-

\qquad

A Field Guide

to Student Success
\qquad in Mathematics and Science

A Sourcebook for Washington State Educators

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A Field Guide to Student	
Success in Mathematics and	
Science	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad nplistic how manual.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Primary Audience
- We envision these practitioners turning to the Field
Guide on a recurring basis as a helfful sourcebook to
assist them in shaping math and science reform
strategies in their shools and school districts.
- Not a one-time read
- A sourcebook for professional development and
ongoing inquiry

\qquad
\qquad
\qquad Guide on a recurring basis as a helpful sourcebook to assist them in shaping math and science reform

- Not a one-time read

A sourcebook for professional development and \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Format of Core Components

```
- Description and context
- Introduces the topic
- Provides supporting data and resources
```

\qquad

- District level strategies
- To-do's for central office leaders
- School level strategies
- To-do's for school leaders
- Reflective questions
- Challenging questions for self and group reflection
- Summary
- Resources

References and research for further inquiry

Discussion \& Group Activity

